Friday, February 23, 2024 3:30pm to 4:30pm
About this Event
3620 South Vermont Avenue, Los Angeles, CA 90089
Tryphon Georgiou, UC Irvine
Abstract: Thermodynamics was born in the 19th century in quest of a way to quantify efficiency of steam engines at the dawn of the industrial age. In the time since, thermodynamics has impacted virtually all other areas in science, from chemistry and biology to the physics of black holes, and yet, progress beyond the classical quasi-static limit towards finite-time thermodynamic transitions has been slow; finite-time is of essence for non-vanishing power generation. In recent years a deeper understanding of non-equilibrium processes has been achieved based on stochastic models with degrees of freedom (state variables) that are subject to Brownian excitation that models heat baths. Within this framework we will explain energy transduction, we will give insights on how anisotropy in thermal or chemical potentials can be tapped for power generation in engineered and physical processes, and we will highlight fundamental bounds on the amount of power that can drawn during finite-time thermodynamic transitions.
The talk is based on joint works with Rui Fu (UCI), Olga Movilla (UCI), Amir Taghvaei (UCI) and Yongxin Chen (GaTech). Research funding by AFOSR, ARO and NSF is gratefully acknowledged.
0 people are interested in this event
User Activity
No recent activity