Wednesday, November 28, 2018 at 3:30pm to 4:30pm

This is a past event.

Kaprielian Hall (KAP), 414

3620 South Vermont Avenue, Los Angeles, CA 90089

**Tim Austin (UCLA)**

Abstract: This talk is about the structure theory of measure-preserving systems: transformations of a finite measure space that preserve the measure. Many important examples arise from stationary processes in probability, and simplest among these are the i.i.d. processes. In ergodic theory, i.i.d. processes are called Bernoulli shifts. Some of the main results of ergodic theory concern an invariant of systems called their entropy, which turns out to be intimately related to the existence of maps from a general system to Bernoulli shifts.

I will give an overview of this area and its history, ending with a recent advance in this direction. A measure-preserving system has the weak Pinsker property if it can be split, in a natural sense, into a direct product of a Bernoulli shift and a system of arbitrarily low entropy. The recent result is that all ergodic measure-preserving systems have this property.

This talk will assume some familiarity with measure theory and the basic language of random variables and their distributions. Past exposure to entropy or ergodic theory will not be essential.

- Event Type
- Campus

- Department
- Mathematics
- Add this to your calendar

No recent activity