Monday, April 12, 2021 2:30pm to 3:45pm
About this Event
Shawn Cui, Purdue University
Abstract: The Kuperberg invariant is a topological invariant of closed 3-manifolds based on finite-dimensional Hopf algebras. Here we initiate the program of constructing 4-manifold invariants in the spirit of Kuperberg's 3-manifold invariant. We utilize a structure called a Hopf triplet, which consists of three Hopf algebras and a bilinear form on each pair subject to certain compatibility conditions. In our construction, we present 4-manifolds by their trisection diagrams, a four-dimensional analog of Heegaard diagrams. The main result is that every Hopf triplet yields a diffeomorphism invariant of closed 4-manifolds. In special cases, our invariant reduces to Crane-Yetter invariants and generalized dichromatic invariants, and conjecturally Kashaev's invariant. As a starting point, we assume that the Hopf algebras involved in the Hopf triplets are semisimple. We speculate that relaxing semisimplicity will lead to even richer invariants.
Zoom meeting: https://usc.zoom.us/j/99698082212?pwd=eVVjNTcrSm5XL1Zaa2VGUTkvUkNtUT09
Meeting ID: 996 9808 2212
Passcode: 102110
User Activity
No recent activity