Monday, April 24, 2023 3:30pm to 4:30pm
About this Event
3620 South Vermont Avenue, Los Angeles, CA 90089
Svetlana Jitomirskaya
UC Irvine and Georgia Tech
Abstract: Harper's operator - the 2D discrete magnetic Laplacian - is the model behind the Hofstadter's butterfly and Thouless theory of the Quantum Hall Effect. It reduces to the critical almost Mathieu family, indexed by the phase. We will present a complete proof of singular continuous spectrum for the critical family, for all phases, finishing a program with a long history. The proof is based on a simple Fourier analysis and a new Aubry duality-type transform. We will also explain how these ideas provide for a very simple proof of zero measure of the spectrum of Harper's operator, a problem previously solved by sophisticated dynamical systems techniques, as well as progress on some other outstanding conjectures.
This program is open to all eligible individuals. USC operates all of its programs and activities consistent with the university’s Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation or any other prohibited factor.
0 people are interested in this event
User Activity
No recent activity