Dori Bejleri, University of Maryland


Title: A moduli theoretic approach to heights on stacks


Abstract: A theory of heights of rational points on stacks was recently introduced by Ellenberg, Satriano and Zureick-Brown as a tool to unify and generalize various results and conjectures about counting problems over global fields. In this talk I will present a moduli theoretic approach to heights on stacks over function fields inspired by twisted stable maps of Abramovich and Vistoli. For some well-behaved class of stacks, we obtain moduli spaces of points of fixed height whose geometry controls the number of rational points on the stack. I will outline an approach for more general stacks which is closely related to the geometry of the moduli space of vector bundles on a curve. This is based on joint work with Park and Satriano.

This program is open to all eligible individuals. USC operates all of its programs and activities consistent with the university’s Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation or any other prohibited factor.

 

Event Details